51 research outputs found

    Characterization of the parameters of interior permanent magnet synchronous motors for a loss model algorithm

    Get PDF
    The paper provides the results of a detailed experimental study on the variations of the characteristics of an interior permanent magnet synchronous motor, when load, speed and/or magnetization conditions vary. In particular, the characterization is carried out by assessing, for several working conditions, the motor parameters that influence its efficiency. From the knowledge of the variability of these parameters, it is possible to develop a dynamic model of the motor, which accurately describes its behaviour and allows estimating the power losses for whatever speed and load. In order to validate the model, the values of the power losses obtained by using the model are compared with the values measured with experimental tests. The study shows that it is possible to maximize the motor efficiency just acting on the direct axis current component and, therefore, it can be considered a first step towards the definition of a loss model algorithm for a control drive system able to minimize in real-time the power losses of the motor

    Recursive Selective Harmonic Elimination for Multilevel Inverters: Mathematical Formulation and Experimental Validation

    Get PDF
    A recursive method that eliminates +1 harmonics and their respective multiples from the output voltage of a cascaded H-bridge multilevel inverters with = 2 dc sources ( = 1, 2, 3,...) is proposed. It solves 2Ă—2 linear systems with not singular matrices and always gives an exact solution with very low computational effort. Simulated results in three-phase five, nine, seventeen and thirty three level CHB inverters, and experimental results in five-level inverter demonstrate the validity of the method

    Impact Evaluation of Innovative Selective Harmonic Mitigation Algorithm for Cascaded H-Bridge Inverter on IPMSM Drive Application

    Get PDF
    This paper presents a detailed analysis of the use of a novel Harmonic Mitigation algorithm for Cascaded H-Bridge Multilevel Inverter in electrical drives for the transportation field. For this purpose, an enhanced mathematical model of Interior Permanent Magnet Synchronous Motor (IPMSM), that takes into account simultaneously saturation, cross-coupling, spatial harmonics, and iron loss effects, has been used. In detail, this model allows estimating accurately the efficiency and the torque ripple of the IPMSM, crucial parameters for transportation applications. Moreover, two traditional pulse width modulation strategies, Sinusoidal Phase-Shifted and Switching Frequency Optimal Phase-Shifted have been considered for comparison purposes with an optimized harmonic mitigation algorithm. Thus, this work provides a deep analysis of IPMSM drive performance fed by CHBMI, paying attention to various aspects such as the IPMSM efficiency, torque ripple, current, and voltage total harmonic distortion (THD). Finally, experimental investigations have been carried out to validate the analysis conducted

    Comparison of three control drive systems for interior permanent magnet synchronous motors

    Get PDF
    In a previous paper, we proposed a control strategy for interior permanent synchronous motors, which takes into account also the reduction of the motor power losses. The novelty of the suggested approach is that it takes into consideration the variations of all the motor parameters that have an influence on its efficiency. In order to verifyon the field the effectiveness of this new method, we implemented the proposed loss model algorithm in a control drive system and compared its performances, in terms of energy losses with respect to other conventional techniques

    Dead-time impact on the harmonic distortion and conversion efficiency in a three-phase five-level Cascaded H-Bridge inverter: mathematical formulation and experimental analysis

    Get PDF
    To avoid leg short-circuit in inverters, dead time must be introduced on leg gate signals. Dead time affects the inverter output voltage fundamental harmonic amplitude, voltage harmonic distortion and inverter efficiency by introducing additional voltage drops. In this regard, dead time effects have been widely investigated for traditional two-level three-phase voltage source inverters in the literature but not extensively for multilevel topology structures. This paper provides a detailed analysis of dead time impact on the harmonic distortion and efficiency of Cascaded H-Bridges Multilevel Inverters (CHBMIs). For this purpose, a general mathematical formulation to determine voltage drop due to dead time effects, also taking into account the adopted Multicarrier PWM strategy, has been provided and experimentally validated for a five-level three-phase CHBMI structure. As a comparison tool between expected and ideal inverter output voltage, the percentage voltage error e% is introduced. In most of the cases, e% is lower than 5%, and it starts increasing for very low amplitude modulation index or for specific working points where nonlinearities occur. Furthermore, several experimental investigations have been carried out to evaluate the CHBMI performance in terms of harmonic distortion and efficiency by changing, the values of dead time, modulation index and switching frequency for ten different multi-carried PWM strategies. Experimental results confirm the strong dependency between the dead time impact on the converter performance and the adopted Multi Carrier-PWM (MC-PWM) strategy: as a way of example, converter efficiency can be reduced from 80% to 60% when dead time is increased from 0.5 ÎĽs to 1.5 ÎĽs and Phase Shifted-PWM (PS-PWM) is adopted

    An Experimental Comparison between an Ironless and a Traditional Permanent Magnet Linear Generator for Wave Energy Conversion

    Get PDF
    Permanent Magnet Linear Generators (PMLGs) are currently being studied for sea wave energy harvesting. Typically, a PMLG consists of an iron-made armature and a moving translator. The permanent magnets adoption produces parasitic effects, such as cogging force, and the machine weight increment. A solution could be the adoption of an ironless configuration, accepting a power density reduction. This paper investigates the use of ironless PMLGs in sea wave energy conversion systems by an experimental comparative analysis between an iron PMLG prototype and an ironless PMLG prototype, which share the same geometry. The main electrical and mechanical parameters (resistance, mass, and magnetic fields) were preliminarily measured. Subsequently, open-circuit and load tests were carried out to compare the induced voltages, the energy transferred to a resistive load, efficiency and the load average power. The reported comparison shows that iron PMLG performances are significantly superior to the ironless ones during the open-circuit tests, as expected. However, the analysis carried out through the load tests shows that the cogging force significantly limits the energy production, obtaining similar values in both machines. Therefore, the experimental tests justify the use of ironless machines in sea wave energy harvesting, where the maximization of energy production is a relevant target

    Switching Frequency Effects on the Efficiency and Harmonic Distortion in a Three-Phase Five-Level CHBMI Prototype with Multicarrier PWM Schemes: Experimental Analysis

    Get PDF
    The current climatic scenario requires the use of innovative solutions to increase the production of electricity from renewable energy sources. Multilevel Power Inverters are a promising solution to improve the penetration of renewable energy sources into the electrical grid. Moreover, the performance of MPIs is a function of the modulation strategy employed and of its features (modulation index and switching frequency). This paper presents an extended and experimental analysis of three-phase five-level Cascaded H-Bridges Multilevel Inverter performance in terms of efficiency and harmonic content considering several MC PWM modulation strategies. In detail, the CHBMI performance is analyzed by varying the modulation index and the switching frequency. For control purposes, the NI System On Module sbRIO-9651 control board, a dedicated FPGA-based control board for power electronics and drive applications programmable in the LabVIEW environment, is used. The paper describes the modulation strategies implementation, the test bench set-up, and the experimental investigations carried out. The results obtained in terms of Total Harmonic Distorsion (THD) and efficiency are analyzed, compared, and discussed

    Challenges for the Goal of 100% Renewable Energy Sources to Fit the Green Transition

    Get PDF
    The increasing penetration of Renewable Energy (RE) into the electrical market is desirable in terms of sustainability. Nevertheless, it is a challenge that all the interested actors shall address from both the technical and economical points of view. This paper provides an overview of the main challenges and solutions towards the technological transition to an electrical system with 100% renewable energy sources in terms of innovations and operative limits of the traditional systems. These innovative paradigms will also address the social impact and government policies

    Maximum Torque per Ampere Control strategy for low-saliency ratio IPMSMs

    Get PDF
    This paper deals with electrical drives employing low-saliency ratio interior permanent magnet synchronous motors. In particular, in order to help the designers choosing the best control algorithm, the performances of the Maximum Torque Per Ampere Control (MTPA) and the Field Orientation Control (FOC) are here both theoretically and experimentally assessed and compared, by using, as performance indicators, the torque-current ratio and the power losses. The tests are carried out on a low-power motor for various speeds and loads by implementing the two control strategies in a dSPACE® rapid prototyping system. The results show that the Maximum Torque Per Ampere algorithm has some appreciable advantages mainly for high load conditions of operation

    Enhanced flexible algorithm for the optimization of slot filling factors in electrical machines †

    Get PDF
    The continuous development in the field of industrial automation and electric mobility has led to the need for more efficient electrical machines with a high power density. The improvement of electrical machines’ slot filling factors is one of the measures to satisfy these requirements. In recent years, this topic has aroused greater interest in the industrial sector, since the evolution of the winding technological manufacturing processes allows an economically sustainable realization of ordered winding arrangements, rather than random ones. Moreover, the manufacture of electrical machines’ windings must be preceded by an accurate design phase in which it is possible to evaluate the maximum slot filling factor obtainable for a given wire shape and for its dimensions. For this purpose, this paper presents an algorithmic approach for the evaluation of maximum slot filling factors in electrical machines under an ideal geometric premise. In particular, this algorithm has a greater degree of flexibility with respect to the algorithm approaches found in the literature, since the study has been extended to round, rectangular and hexagonal wire sections. Furthermore, the slot filling factor calculation was carried out both for standard and non-standard slots. The algorithmic approach proposed can be considered as an additional useful tool for the fast design of electrical machine windings
    • …
    corecore